Расчет поступления холода с водой холодного водоснабжения

В соответствии с анонсом публикую расчет поступления холода с водой холодного водоснабжения. Данные поступления холода возможно использовать, установив, например, водяной охладитель воздуха на системе приточной вентиляции или внутренней рециркуляционной вентиляции.

Расчет проводится с учетом следующих исходных данных:

  • Количество проживающих людей – 4
  • Площадь поливной земли – 300 м2
  • Температура водопроводной воды – 15 °С
  • Температура нагрева – Δt = 5 °С
  • Приготовление горячей воды – подогрев в скоростном водонагревателе, котле или бойлере.

Расчет потребления холодной воды произведен в соответствии со СНиП 2.04.01-85 “Внутренний водопровод и канализация”.

Норма расхода холодной воды в средние сутки для жилых домов квартирного типа оборудованных быстродействующими водонагревателями с многоточечным водоразбором в расчете на 1 жителя составляет 210 л/чел.

Суточное потребление воды на дом с 4 жильцами составит:

210 × 4 = 840 л.

Норма расхода воды на полив зеленых насаждений, газонов и цветников составляет 3-6 л/м2. Примем 4,5 л/м2 Суточное потребление на полив 300 м2 составляет.

4,5 × 300 = 1350 л

Общий суточный расход холодной воды:

840 + 1350 = 2190 л

Количество холода, поступившего с холодной водой, при нагреве воды от +15 до +20 °С, приняв для воды 1 л = 1 кг

2190 × 4,187 кДж/кг-К × 5 К = 45847 кДж/сутки

Среднесуточная тепловая мощность составит:

45847 кДж/сутки / 84600 сек/сутки = 0,53 кВт

Годовая экономия электроэнергии на кондиционирование при этом составит:

0,53 × 24 × 150 = 1910 кВт×ч

Вывод – поступлений холода с холодной водой воды недостаточно для существенного покрытия потребностей в холоде для стандартных жилых домов. Экономический эффект от использования холода при стоимости электроэнергии 0,33 грн/кВт×ч составит:  1910 × 0,33 = 630 грн/сезон. Дополнительно, будет эффект от снижения потребности в топливе на нагрев горячей воды.

Автор:

Опасность взрыва котла

Безопасность котлов обеспечивается рядом мероприятий, как технических, так и организационных. Но, наиболее эффективным решением является снижение исходных факторов опасности. Во многих случаях начаильные факторы опасности можно полностью устранить или существенно снизить.

Что создаёт опасность взрыва? Ответ – внутренний сосредоточенный водяной объем котла. Для котлов одинаковой мощности, более опасным будет котел с большим внутренним объемом сосредоточенном в одном сосуде (барабане). При этом, различные конструкции котлов существенно отличаются этим параметром.

Опасность взрыва для паровых котлов

Показатели водяного объема для паровых котлов мощностью 4-5 МВт

Производитель и модель котла Мощность, МВт Водяной объем, л Удельный объем, л/МВт
Жаротрубный паровой котел  Vitomax 200 HS 4,5 13400 2978
0 0
Водотрубный барабанный котел ДКВР-6,5 4,03 6800 1690
10350 2568
Водотрубный прямоточный котел Clayton E-504 4,905 0 0
1495 305

В числителе (жирным) – водяной объем сосудов (барабанов)
В знаменателе – общий водяной объем котла с котловыми трубами

Анализ показателей водяного объема для паровых котлов различной конструкции

Жаротрубные паровые котлы имеют наибольший  сосредоточенный объем и наибольшую потенциальную опасность внутренней энергии воды.

Водотрубные барабанные котлы имеют общий водяной объем несколько меньший чем у жаротрубных котлов, при этом, большая часть воды находится в котловых трубах, а барабаны котлов не испытывают повышенных термических нагрузок, что несколько уменьшает возможные последствия аварии и опасность внутренней энергии воды.

Водотрубные прямоточные котлы на примере парового котла Clayton Industries имеют минимальные показатели водяного объема. При этом, котлы такой конструкции не имеют обогреваемых объемов (барабанов), превышение внутреннего давления в которых может привести к взрыву. С точки зрения возможности парового взрыва самого котла, эти котлы не представляют опасности.

Опасность взрыва для водогрейных котлов

Жаротрубные водогрейные котлы, с точки зрения безопасности, существенно проигрывают котлам любой другой конструкции, так как конструктивно не отличаются от жаротрубных паровых котлов. И, если, для паровых котлов барабан необходим для создания зеркала испарения и парового объема, то для водогрейных котлов барабан не является конструктивной необходимостью. Водотрубные водогрейные котлы любой конструкции будут иметь существенно меньший водяной объем, который, кроме того, не централизован, а распределен по котловым трубам. Соответственно, любые водотрубные котлы будут гораздо безопасней жаротрубных.

Следует заметить, что бытовые отопительные котлы со стальным теплообменником имеют дымогарную конструкцию. С точки зрения безопасности, котлы такой конструкции также представляют повышенную опасность. При этом, зачастую они вовсе не оборудованные приборами безопасности. Достаточно часты случаи паровых взрывов малометражных котлов, особенно в периоды максимального зимнего похолодания.

И, напоследок, немного из литературных источников, времен, когда индустриализация набирала свои обороты.

“Молох”, А. И. Куприн, 1896 г.

Доктор подошел к краю кочегарки.
– Вот так преисподняя! – воскликнул он, заглянув вниз. – Сколько каждый такой самоварчик должен весить? Пудов восемьсот, я думаю?..
– Нет, побольше. Тысячи полторы.
– Ой, ой, ой… А ну как такая штучка вздумает того… лопнуть? Эффектное выйдет зрелище? А?
– Очень эффектное, доктор. Наверно, от всех этих зданий не останется камня на камне…
Гольдберг покачал головой и многозначительно свистнул.
– Отчего же это может случиться?
– Причины разные бывают… но чаще всего это случается таким образом: когда в котле остается очень мало воды, то его стенки раскаляются все больше и больше, чуть не докрасна. Если в это время пустить в котел воду, то сразу получается громадное количество паров, стенки не выдерживают давления, и котел разрывается.
– Так что это можно сделать нарочно?
– Сколько угодно. Не хотите ли попробовать? Когда вода совсем упадет в водомере, нужно только повернуть вентиль… видите, маленький круглый рычажок… И все тут.
Бобров шутил, но голос его был странно серьезен, а глаза смотрели сурово и печально. “Черт его знает, – подумал доктор, – милый он человек, а все-таки… психопат…”

Обзор существующих технологий сжигания твердого топлива в индивидуальных котлах

На сегодня получили распространение котлы со следующими видами сжигания:

  • Универсальные котлы для сжигание угля, дров на колосниковой решетке.
  • Пиролизные (газогенераторные) котлы для сжигания древесного топлива.
  • Котлы для сжигания подготовленного топлива (пеллеты, щепа заданной крупности).

Универсальные твердотопливные котлы для сжигания угля, дров на колосниковой решетке

Обычные котлы со стальной или чугунной топкой (теплообменником). Котлы такого типа широко производились ранее промышленностью СССР и производятся сегодня под марками КЧМ, КСТ, КСТГ, КОТВ и другие.

Сжигание топлива происходит на традиционной колосниковой решетке, в общем объеме топки которая также служит и рабочим запасом топлива.

ПреимуществаНедостатки
  • Низкая стоимость котла
  • Невысокий КПД
  • Небольшое время горения на одной закладке топлива
  • Невозможность автоматизировать подачу топлива

Исходя из технических характеристик основным применением является отопление частных домов или производственных объектов с постоянным присутствием людей, обеспечивающих топку котла (жильцов или персонала обеспечивающего эксплуатацию котельной на твердом топливе).

Пиролизные котлы для дров

Котлы или воздухонагреватели такого типа используют принцип пиролиза (газогенерации) с последующим дожигом газообразных продуктов пиролиза в специальной зоне.

ПреимуществаНедостатки
  • Выскоий КПД
  • Качественное сжигание топлива
  • Длительная работа котла или теплогенератора на одной загрузке топлива
  • Необходимость ручной загрузки топлива

Котлы или теплогенераторы такого типа можно применять в индивидуальных системах отопления, где есть возможность закладки топлива как минимум дважды в сутки.

Пеллетные котлы

Котлы этого типа используют специальным образом подготовленное топливо – пеллеты, или древесину заданной фракции (щепу) для автоматизации подачи топлива в котел. Система подачи топлива обычно состоит из топливного бункера, системы топливоподачи и пеллетной горелки. Системы подачи топлива бывают или шнековые или с пневоподачей.

ПреимуществаНедостатки
  • Выскоий КПД
  • Качественное сжигание топлива
  • Высокая степень автоматизации, минимальная необходимость в присутствии человека для работы котла.
  • Длительная работа автоматическая работа котла.
  • Стоимость подготовленного топлива (пеллет) выше стоимости неподготовленного топлива (дров)
  • Несколько большая необходимая площадь для размещения котла, за счет системы топливоподачи.
  • Высокая стоимость.

Такого типа котлы применяют в системах, где необходимо обеспечить длительный автоматический режим работы с регулируемым отпуском количества тепловой энергии.

Теплообменные аппараты для тепловых насосов

Тепловые насосы использующие, как правило, низкопотенциальное тепло предъявляют высокие требования к теплообменному оборудованию – необходимо обеспечить необходимую тепловую мощность при минимальных температурных градиентах. Примеры теплообменных аппаратов для использования с с тепловыми насосами:

Характеристики некоторых моделей теплообменных аппаратов:

Мощность сборки, Q, кВт * 50 70
Количество теплообменных аппаратов, шт 2 2
Присоединение Последовательное, по обеим средам
Расход через теплообменник, м3/ч
  — нагреваемый контур (вода – пропиленгликоль 30%) 14,92 28,89
  — греющего теплоносителя 14,26 19,96
Сопротивление теплообменника, м. вод. ст.
  — нагреваемой воды 9,8 6,0
  — греющего теплоносителя 9,8 5,8
Габаритные размеры теплообменного аппарата:
  — D 89 108
  — D1 108 133
  — L 2695 2595
  — L1 2293 2171
  — H 298 322
Вес, кг 14 22
Материал теплообменника Нержавеющая сталь AISI316 (02Х17Н14М2)
Цена, грн 23505 32895

* Обеспечивается при среднем температурном напоре между греющим и нагреваемым контуром в 3 °С.

Реконструкция битумоварочных котлов и сушильных барабанов асфальтосмесительных установок

Фотоотчет по замене газовых горелок на горелки серии КП на оборудовании асфальтобетонных заводов – брабанном сушиле асфальтосмесительной установки и битумоварочном котле

[photospace]

Недостатки традиционных прямоточных котлов

Особенность многих прямоточных котлов – производитель комплектует оборудование вспомогательным оборудованием общего назначения. Это накладывает определенные ограничения на возможности по компоновке котла. Так, например, газовая горелка на таких котлах не может быть размещена внизу котла, а верхнее размещение горелки создаёт целый ряд проблем:

  • Возможность перегрева самой горелки при внезапной остановке котла восходящими потоками горячих продуктов сгорания.
  • Необходимость тяжелой теплоизоляции верхней стенки котла, которая по конструкции не является водоохлаждаемой.
  • Перегрев верхней стенки котла в случае нарушения в теплоизоляции.
  • Необходимость в проведении периодических ремонтов теплоизоляции верхней стенки котла, длительность которых составляет несколько дней, что связано с необходимостью выдержки теплоизоляционных материалов.
  • Нерациональность тепловых потоков, сложный теплообмен в топке не позволяет получить максимальных показателей КПД.

Как пример – можно привести пример котла Garioni Naval который после нескольких лет эксплуатации потребовал остановки на ремонт через существенное разрушение тепловой изоляции и перегрев верхней стенки.

[photospace]

Последствия эксплуатации котла в режиме “конденсации” (фото)

Котел эксплуатировался с пониженным расходом газа, в результате чего температура уходящих газов была ниже точки росы. Последствия:

  • Коррозия теплообменника.
  • Некачественное горение топлива.
  • Засорение теплообменника продуктами некачественного горения и коррозии.
  • Выход продуктов горения в помещение котельной, в результате возросшего сопротивления теплообменника.
  • Попадание влаги на датчик тяги, его пробой и замыкание на корпус.
  • Отказ автоматики в результате замыкания датчика на корпус.

[photospace]

Опасность от морозов

Похолодание может привести не только к повышенному расходу топлива, но и вызвать аварии на оборудовании и системах. Это, вызвано как более жесткими условиями в котором работает оборудование, так и непосредственно воздействием мороза на оборудование при нарушении правил эксплуатации. Наибольшую опасность представляет замораживание предохранительных устройств и отводных трубопроводов от предохранительных устройств оборудования и систем (котлов, деаэраторов).

Взрыв деаэратора в г. Феодосия
Взрыв деаэратора в г. Феодосия

При отоплении индивидуальных строений оборудованных открытыми системами отопления частым случаем является замерзание трубопровода к расширительному баку, часто расположенному на неотапливаемом чердаке. При этом, в результате неконтролируемого роста давления воды в системе котлы, не оборудованные собственными сбросными клапанами и имеющими большой удельный объем воды перегреваются до критических температур. Паровой взрыв такого котла обладает энергией, которая может вызывать существенное разрушение строительных конструкций здания.

Инциденты:

  • Взрыв деаэратора в котельной г. Феодосия, 12.02.2012 г. на mail.ru , на investigator.org.ua

Котельня із котлом Ferroli Woodmatic S 2000 на пелетах (2,0 Гкал/год)

Старый котел
Старий котел

Встановлено котел на біогенному твердому паливі (паливні пелети з лушпиння соняшника) Ferroli Woodmatic S 2000, тепловою продуктивністю 2 Гкал/годину в заміну газового котлу.

З метою запобігти корозії котел гідравлічно відокремлений від теплової мережі трубчатим теплообмінним апаратом потужністю.

Подача палива в котел – автоматична. Система автоматики забезпечує повністю автоматичну роботу котла.

Зберігання палива за допомогою системи “рухоме дно”.

Котел Ferroli Woodmatic S 2000 на топливных пеллетах
Котел Ferroli Woodmatic S 2000 на паливникх пелетах

Планируемая котельная общеобразовательной школы (Днепропетровская область)

Существующее положение: котельная с двумя котлами Универсал 5М для работы на угле установленная в подвальном помещении школы.

Планируется: Автоматизированная котельная для работы на пеллетах с двумя котлами мощностью 180-216 кВт в существующем отдельностоящем здании.

Стадия: Разработка проектной документации

Дата начала работ: 09/2011

[photospace]