Топочная на 100 кВт с конденсационными котлами WOLF

Топочная переоснащена конденсационными котлами в 2016 году.

Топочная с 3 устаревшими и изношенными котлам FEG мощностью 35 кВт и КПД 88%

Было

Топочная с 3 устаревшими и изношенными котлам FEG мощностью 35 кВт и КПД 88%

Установлены конденсационные котлы WOLF CGB-50 общей тепловой мощностью 100 кВт и КПД до 109%

Котлы

Установлены конденсационные котлы WOLF CGB-50 общей тепловой мощностью 100 кВт и КПД до 109%

Для подпитки установлена установка умягчения воды.

Установка умягчения

Для подпитки установлена установка умягчения воды.

Котельная для утилизации отходов фармацевтической промышленности

Установленых основные блоки котельной – топка, дожигатель, котел-утилизатор

Основные блоки

Установленых основные блоки котельной – топка, дожигатель, котел-утилизатор

Градирня, для сброса тепла в случае его избытка

Градирня

Градирня, для сброса тепла в случае его избытка

Смонтированы тепловая схема, обвязка котельной, насосы, теплообменник

Тепловая схема

Смонтированы тепловая схема, обвязка котельной, насосы, теплообменник

Тепловая изоляция трубопроводов базальтовой ватой с оцинкованным покровным слоем

Теплоизоляция

Тепловая изоляция трубопроводов базальтовой ватой с оцинкованным покровным слоем

Готово

Котельная после окончания комплекса строительніх работ

Теплообменные аппараты для тепловых насосов

Тепловые насосы использующие, как правило, низкопотенциальное тепло предъявляют высокие требования к теплообменному оборудованию – необходимо обеспечить необходимую тепловую мощность при минимальных температурных градиентах. Примеры теплообменных аппаратов для использования с с тепловыми насосами:

Характеристики некоторых моделей теплообменных аппаратов:

Мощность сборки, Q, кВт * 50 70
Количество теплообменных аппаратов, шт 2 2
Присоединение Последовательное, по обеим средам
Расход через теплообменник, м3/ч
  — нагреваемый контур (вода – пропиленгликоль 30%) 14,92 28,89
  — греющего теплоносителя 14,26 19,96
Сопротивление теплообменника, м. вод. ст.
  — нагреваемой воды 9,8 6,0
  — греющего теплоносителя 9,8 5,8
Габаритные размеры теплообменного аппарата:
  — D 89 108
  — D1 108 133
  — L 2695 2595
  — L1 2293 2171
  — H 298 322
Вес, кг 14 22
Материал теплообменника Нержавеющая сталь AISI316 (02Х17Н14М2)
Цена, грн 23505 32895

* Обеспечивается при среднем температурном напоре между греющим и нагреваемым контуром в 3 °С.

Реконструкция битумоварочных котлов и сушильных барабанов асфальтосмесительных установок

Фотоотчет по замене газовых горелок на горелки серии КП на оборудовании асфальтобетонных заводов – брабанном сушиле асфальтосмесительной установки и битумоварочном котле

[photospace]

Обогреватели, которые не сушат воздух и не сжигают кислород

В настоящее время часто можно встретить обогреватели, которые не сушат воздух (а некоторые ещё не сжигают кислород!)

Конечно, неприятно находиться в комнате, где воздух высушили, да, к тому-же, и без кислорода в придачу! Уже бежим и покупаем?! Или ещё подумаем? Если ‘будем ещё думать’, то вот вам дровишки:

‘Сушит воздух’ – любой нагрев воздуха сопровождается снижением его относительной влажности. И это не зависит от того, как мы будем греть – чугунной ли батареей, кондиционером, карбоновым нагревателем, маслянным радиатором или простым тепловентилятором с нихромовой спиралью. Механизм “осушения” такой: при повышении температуры повышается и “растворимость” влаги в воздухе. Поэтому, тот воздух, который зимой был на улице насыщен влагой на 60%, попав в помещение и нагревшись до комфортных 20 °C, становится уже влажным только на 30%, так как количество влаги, которую он может в себе содержать, соответственно выросло. Таким образом, получается, что абсолютная влажность (т.е. фактическое содержание воды в 1 м3 воздуха) не изменилась, но воздух стал суше в относительных величинах.

А именно относительная влажность определяет, насколько воздух будет “сушить” бельё на верёвочке, вашу кожу и ваши слизистые оболочки.

Никаких других механизмов осушения воздуха при нагреве не существует.

Автор, всё-же, настоятельно рекомендует решать проблемы сухого воздуха в своём жилье. Реальной помощью может быть только понимание сути вопроса и увлажнитель воздуха. В крайнем случае – мокрые простыни на батарею, хоть это и не эстетично :^)

‘Сжигание кислорода’ – сжигают кислород только те обогреватели, в которых имеется открытое пламя. Все остальные отопительные приборы на количество кислорода практически никак не влияют. Хотя, и запах пыли, жарящейся на нихромовой проволоке обычных тепловентиляторов, вряд ли доставит кому-либо органолептическое удовольствие.

P.S. Следует знать, что нормальная для организма влажность воздуха от 40 до 60%. При этом, в жилье, где этот вопрос никак специально не решают, влажность воздуха зимой составляет 25-30%. Почему это очень плохо? Короткий ответ – в слишком сухом воздухе вероятность заболеть ОРВИ выше, а его течение хуже. Некоторые люди испытывают проблемы с сухостью кожи и волос.

Расчет тепловой мощности системы отопления

Расчет тепловой мощности системы отопления – это численное определение тепловых потерь здания и собственных тепловыделений от нормального функционирования здания.

Тепловые потери зданий обычно складываются из:

  • потери через ограждающие конструкции здания (стены, окна, кровля, полы и т.п.);
  • потери на инфильтрацию холодного воздуха через неплотности и щели;
  • потери на подогрев приточного воздуха;
  • потери связанные с открыванием дверей, ворот;
  • потери связанные с нагревом подаваемых в помещения холодных материалов, механизмов, машин;

Собственные тепловыделения обычно связаны с нахождением в помещениях людей, животных, инсоляцией через светопрозрачные конструкции, работой электрических машин, приборов, освещения, сжиганием топлива в различных установках, печах, котлах, прохождением транзитных трубопроводов с нагретыми веществами.

Расчет может выполняться детально или укрупнёно.

При детальном выполнении расчета каждый вид потерь рассчитывается индивидуально с применением соответствующих норм расчета.

При укрупнённом выполнении расчета тепловая мощность определяется на основании принятых удельных величин теплопотребления на 1 м3 зданий. Эти удельные величины зависят от назначения здания и от его объема.

Нормативным является только метод детального выполнения расчета. Укрупненный расчет может применяться ограничено в качестве предварительного.

Опалення теплиць та парників

Весняні теплиці

Для опалення весняних теплиць переважно застосовують повітряне опалення. Як опалювальні апарати переважно використовувати теплогенератори тривалого циклу горіння на дровах, відходах деревини, наприклад, теплогенератори БІЗОН.

Поодинока потужність та розміщення опалювальних апаратів визначається виходячи з умов забезпечення рівномірності опалення у теплиці.

Розрахунок теплової потужності, необхідної для опалення теплиці, визначається розрахунком теплових втрат, з урахуванням мінімальної можливої ​​розрахункової температури повітря в період експлуатації теплиці.

Зимові теплиці

Зимові теплиці – найскладніші споруди для цілорічного вирощування овочів. Опалення зимових теплиць повинно передбачатися комплексним, і зазвичай включає водяне опалення або водяне в поєднанні з повітряним і водяний обігрів грунту.

Джерелом теплопостачання для зимових теплиць зазвичай є водогрійна котельня, що по можливості використовує відновлювані ресурси як паливо.

Теплообменные аппараты для индивидуальных тепловых пунктов

Трубчатые теплообменные аппараты для индивидуальных тепловых пунктов. Позволяют изолировать контур индивидуальной системы отопления от наружных тепловых сетей.

  • Материал – нержавеющая сталь AISI 316 (или по заказу – AISI 304).
  • Быстрый подбор теплообменника на любые нужные температурные параметры и расходы теплоносителей.
  • Большой диапазон рабочих характеристик –  диаметры от 25 до 200 мм, максимальная длина – 4 м
  • Не требуют очистки, так как используется эффект самоочистки при высоких скоростях движения жидкости.
  • Легко разбираются для осмотра и без проблем собираются (привет пластинчатым теплообменникам!).
  • Легко размещаются без всяких дополнительных креплений в трубопроводных узлах.

Срок изготовления – до 2 недель.

Характеристики некоторых моделей теплообменных аппаратов:

Мощность, Q, кВт * 15 19 96
Расход через теплообменник, м3/ч
  – нагреваемой воды 0,58 0,85 4,21
  – греющего теплоносителя 0,58 0,85 4,21
Сопротивление теплообменника, м. вод. ст.
  – нагреваемой воды 0,7 1,7 2
  – греющего теплоносителя 0,5 1,1 1,7
Габаритные размеры теплообменного аппарата:
  – D 3/4″ 3/2″ 2″
  – D1 1 1/4″ 1 1/4″ 89
  – L 2315 2515 2375
  – L1 2047 2247 2077
  – H 117 117 268
Вес, кг 2 2 8
Материал теплообменника Нержавеющая сталь AISI316 (02Х17Н14М2)
Цена, грн 3502 3679 9450

* Обеспечивается при среднем температурном напоре между греющим и нагреваемым контуром в 10 °С.

[form teploobmennik]

Котельня із котлом Ferroli Woodmatic S 2000 на пелетах (2,0 Гкал/год)

Старый котел
Старий котел

Встановлено котел на біогенному твердому паливі (паливні пелети з лушпиння соняшника) Ferroli Woodmatic S 2000, тепловою продуктивністю 2 Гкал/годину в заміну газового котлу.

З метою запобігти корозії котел гідравлічно відокремлений від теплової мережі трубчатим теплообмінним апаратом потужністю.

Подача палива в котел – автоматична. Система автоматики забезпечує повністю автоматичну роботу котла.

Зберігання палива за допомогою системи “рухоме дно”.

Котел Ferroli Woodmatic S 2000 на топливных пеллетах
Котел Ferroli Woodmatic S 2000 на паливникх пелетах

Планируемая котельная общеобразовательной школы (Днепропетровская область)

Существующее положение: котельная с двумя котлами Универсал 5М для работы на угле установленная в подвальном помещении школы.

Планируется: Автоматизированная котельная для работы на пеллетах с двумя котлами мощностью 180-216 кВт в существующем отдельностоящем здании.

Стадия: Разработка проектной документации

Дата начала работ: 09/2011

[photospace]